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Abstract

Intrinsic volumes and Minkowski tensors have been used to describe the ge-
ometry of real world objects. This paper presents an estimator that allows
to approximate these quantities from digital images. It is based on a gener-
alized Steiner formula for Minkowski tensors of sets of positive reach. When
the resolution goes to infinity, the estimator converges to the true value if
the underlying object is a set of positive reach. The underlying algorithm is
based on a simple expression in terms of the cells of a Voronoi decomposition
associated with the image.

Keywords: Minkowski tensor, digital algorithm, set of positive reach, digitiza-
tion

1 Introduction

Minkowski tensors are tensor valued generalizations of the Minkowski functionals,
associating with every sufficiently regular compact set in Rd a symmetric tensor,
rather than a scalar. They carry information about geometric features of the set
such as position, orientation and eccentricity. For instance, the volume tensor –
defined formally in Section 2 – of rank 0 is just the volume of the set, while the
volume tensors of rank 1 and 2 are closely related to the center of gravity and the
tensor of inertia, respectively. For this reason, Minkowski tensors can be used as
shape descriptors in materials science [23, 25], physics [12] and biology [2, 30].

The main purpose of this paper is to present estimators that approximate all the
Minkowski tensors of a set K when only very weak information on K is available.
More precisely, we assume that a finite set K0 which is close to K in the Hausdorff
metric is known. The estimators are based on the Voronoi decomposition of Rd as-
sociated with the finite set K0, following an idea of Mérigot et al. [17]. What makes
these estimators so interesting is that they are consistent; that is, they converge to
the respective Minkowski tensors of K when applied to a sequence of finite approx-
imations converging to K. We emphasize that the notion of ‘estimator’ is used here
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in the sense of digital geometry [14] meaning ‘approximation of the true value based
on discrete input’ and should not be confused with the statistical concept related to
the inference from data with random noise. The main application we have in mind
is the case where K0 is a digitization of K. This is detailed in the following.

As data is often only available in digital form, there is a need for estimators that
allow us to approximate the Minkowski tensors from digital images. In a black-and-
white image of a compact geometric object K ⊆ Rd, each pixel (or voxel) is colored
black if its midpoint belongs to K and white otherwise. Thus, the information about
K contained in the image is the set of black pixel (voxel) midpoints K0 = K ∩ aL,
where L is the lattice formed by all pixel (voxel) midpoints and a−1 is the resolution.
A natural criterion for the reliability of a digital estimator is that it yields the correct
tensor when a→ 0+. This property is called multigrid convergence. The estimators
suggested in [22, 24] are all of local type; that is, they are obtained by scanning the
digital image with a linear filter of predetermined fixed size and thus they avoid an
explicit reconstruction of the object’s boundary. The advantage of these estimators
is that they are intuitive, easy to implement, and the computation time is linear in
the number of pixels or voxels. However, it appears that none of these estimators is
multigrid convergent. In fact, it is shown in [26] that there is no multigrid convergent
estimator for a Minkowski tensor of rank 0 other than the volume. This also excludes
multigrid convergent estimators for certain Minkowski tensors of higher rank; see
the discussion in Section 7. In this paper, we therefore suggest an estimator that is
not local, but which yields a multigrid convergent approximation for all Minkowski
tensors. The present work is inspired by [17], and we therefore start by recalling
some basic notions from this paper.

For a nonempty compact set K, the authors of [17] define a tensor valued mea-
sure, which they call the Voronoi covariance measure, defined on a Borel set A ⊆ Rd

by

VR(K;A) =

∫

KR

1A(pK(y))(y − pK(y))(y − pK(y))> dy.

Here, KR is the set of points at distance at most R > 0 from K and pK is the metric
projection on K: the point pK(x) is the point in K closest to x, provided that this
closest point is unique. The metric projection of K is well-defined on Rd with the
possible exception of a set of Lebesgue-measure zero; see, e.g., [6].

The paper [17] is mainly concerned with local features of surfaces and it is proved
there that when K ⊆ R3 is a smooth surface, then

VR(K;B(x, r)) ≈ 2π

3
R3r2

(
u(x)u(x)> +

r2

4

∑

i=1,2

κi(x)2Pi(x)Pi(x)>
)
, (1.1)

where B(x, r) is the Euclidean ball with midpoint x ∈ K and radius r, u(x) is the
surface normal at x ∈ K, P1(x), P2(x) are the principal directions and κ1(x), κ2(x)
the corresponding principal curvatures. Hence, the eigenvalues and -directions of the
Voronoi covariance measure carry information about local curvatures and normal
directions.

Assuming that a compact set K0 approximates K, [17] suggests to estimate
VR(K; · ) by VR(K0; · ). It is shown in that paper, that VR(K0; · ) converges to
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VR(K; · ) in the bounded Lipschitz metric when K0 → K in the Hausdorff metric.
Moreover, if K0 is a finite set, then the Voronoi covariance measure can be expressed
in the form

VR(K0;A) =
∑

x∈K0∩A

∫

B(x,R)∩Vx(K0)

(y − x)(y − x)> dy.

Here, Vx(K0) is the Voronoi cell of x in the Voronoi decomposition of Rd associated
with K0. Thus, the estimator which is used to approximate VR(K;A) is easily com-
puted. Given the Voronoi cells of K0, each Voronoi cell contributes with a simple
integral. Figure 1 (a) shows the Voronoi cells of a finite set of points on an ellipse.
The Voronoi cells are elongated in the normal direction. This is the intuitive reason
why they can be used to approximate (1.1).

The Voronoi covariance measure VR(K;A) can be identified with a symmetric
2-tensor. In the present work, we explore how natural extensions of the Voronoi
covariance measure can be used for estimating general Minkowski tensors. We will
work with full-dimensional sets K, and the finite point sample K0 may be obtained
from the representation K0 = K ∩ aL of a digital image of K. The Voronoi cells
associated with K0 = K ∩ aL are sketched in Figure 1 (b). The generalizations
of the Voronoi covariance measure, which we will introduce, will be called Voronoi
tensor measures. We will then show how the Minkowski tensors can be recovered
from these. Taking point samples from K with increasing resolution, convergence
results will follow from an easy generalization of the convergence proof in [17].

(a) (b)

Figure 1: (a). The Voronoi cells of a finite set of points on a surface. (b). A digital image
and the associated Voronoi cells.

The paper is structured as follows: Minkowski tensors are defined in Section 2. In
Section 3, we define the Voronoi tensor measures, discuss how they can be estimated
from finite point samples, and explain the Steiner formula that connects them with
the Minkowski tensors. Section 4 is concerned with the convergence of the estimator.
The results are specialized to digital images in Section 5. Section 6 discusses a
generalization to the estimation of local Minkowski tensors on the normal bundle.
Finally, the estimator is compared with existing approaches in Section 7.

2 Minkowski tensors

We work in Euclidean space Rd with scalar product 〈 · , · 〉 and norm | · |. The
Euclidean ball with center x ∈ Rd and radius r ≥ 0 is denoted by B(x, r), and we
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write Sd−1 for the unit sphere in Rd. The k-dimensional Hausdorff-measure in Rd is
denoted by Hk, 0 ≤ k ≤ d. Let Tp denote the space of symmetric p-tensors (tensors
of rank p) over Rd. We denote by xr the r-fold tensor product of x ∈ Rd and for two
symmetric tensors a, b we denote their symmetric tensor product by ab. Identifying
Rd with its dual (via the scalar product), a symmetric p-tensor defines a symmetric
multilinear map (Rd)p → R. Letting e1, . . . , ed be the standard basis in Rd, a tensor
T ∈ Tp is determined by its coordinates

Ti1...ip = T (ei1 , . . . , eip)

with respect to the standard basis, for all choices of i1, . . . , ip ∈ {1, . . . , d}. We use
the norm on Tp given by

|T | = sup{|T (v1, . . . , vp)| : |v1| = · · · = |vp| = 1}

for T ∈ Tp. The same definition is used for arbitrary tensors of rank p.
For any compact K ⊆ Rd, we can define an element of Tr called the rth volume

tensor
Φr,0

d (K) =
1

r!

∫

K

xr dx.

For s ≥ 1 we define Φr,s
d (K) = 0. We will now define Minkowski surface ten-

sors, which require stronger regularity assumptions on K. Usually, like in [20, Sec-
tion 5.4.2], the set K is assumed to be convex. However, as Minkowski tensors
are tensor-valued integrals with respect to the generalized curvature measures (also
called support measures) of K, they can be defined whenever the latter are available.
We use this to define Minkowski tensors for sets of positive reach.

For a compact set K ⊆ Rd, we let dK(x) denote the distance from x ∈ Rd to K.
Then KR = {x ∈ Rd | dK(x) ≤ R} is the R-parallel set of K. The reach Reach(K)
of K is defined as the supremum over all R ≥ 0 such that for all x ∈ Rd with
dK(x) < R there is a unique closest point pK(x) in K. We say that K has positive
reach if Reach(K) > 0. By definition, the map pK is defined everywhere on KR if
R < Reach(K).

Let K ⊆ Rd be a set of positive reach. Zähle [29] introduced the generalized
curvature measures Λk(K; · ) of K, for k = 0, . . . , d − 1. An extension to general
closed sets is considered in [10]. The generalized curvature measures (also called
support measures) are measures on Σ = Rd × Sd−1. Based on these measures, for
every k ∈ {0, . . . , d− 1} and r, s ≥ 0 we define the Minkowski tensor in Tr+s by

Φr,s
k (K) =

1

r!s!

ωd−k
ωd−k+s

∫

Σ

xrusΛk(K; d(x, u)).

Here ωj is the surface area of the unit sphere Sj−1 in Rj. More information on
Minkowski tensors can for instance be found in [11, 16, 21].

One can define local Minkowski tensors in a similar way (see [9]). For a Borel set
A ⊆ Rd we put

Φr,s
k (K;A) =

1

r!s!

ωd−k
ωd−k+s

∫

A×Sd−1

xrus Λk(K; d(x, u))
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and
Φr,0

d (K;A) =
1

r!

∫

K∩A
xr dx.

Moreover, we define Φr,s
d (K; · ) = 0 if s ≥ 1. The local Minkowski tensors can be

used to describe local boundary properties. For instance, local 1- and 2-tensors are
used for the detection of sharp edges and corners on surfaces in [5]. They also carry
information about normal directions and principal curvatures.

We conclude this section with a general remark on continuity properties of
the Minkowski tensors. Let Cd be the family of nonempty compact subsets of Rd

and Kd ⊆ Cd the subset of nonemtpy compact convex sets. For two compact sets
K,M ∈ Cd, we define their Hausdorff distance by

dH(K,M) = inf{ε > 0 | K ⊆M ε,M ⊆ Kε}.

Although the functions K 7→ Φr,s
k (K) are continuous when considered in the metric

space (Kd, dH), they are not continuous on Cd. (For instance, the volume tensors
of a finite set are always vanishing, but finite sets can be used to approximate any
compact set in the Hausdorff metric.) This is the reason why our approach requires
an approximation argument with parallel sets as outlined below. The consistency
of our estimator is mainly based on a continuity result for the metric projection
map. We quote this result [3, Theorem 3.2] in a slightly different formulation which
avoids dependence on the diameter diam(K) of K and is symmetric in the two
bodies involved. Let ‖f‖L1(E) be the usual L1-norm of the restriction of f to a Borel
set E ⊆ Rd.

Proposition 2.1. Let ρ > 0 and let E ⊆ Rd be a bounded measurable set. Then
there is a constant C1 = C1 (d, diam(E ∪ {0}), ρ) > 0 such that

‖pK − pK0‖L1(E) ≤ C1dH(K,K0)
1
2

for all K,K0 ∈ Cd with K,K0 ⊆ B(0, ρ).

Proof. Let E ′ be the convex hull of E and observe that

‖pK − pK0‖L1(E) ≤ ‖pK − pK0‖L1(E′).

It is shown in [3, Lemma 3.3] (see also [7, Theorem 4.8]) that the map vK : Rd → R
given by vK(x) = |x|2 − d2

K(x) is convex and that its gradient coincides almost
everywhere with 2pK . Since E ′ has rectifiable boundary, [3, Theorem 3.5] implies
that

‖pK − pK0‖L1(E′) ≤ c1(d)(Hd(E ′) + (c2 + ‖d2
K − d2

K0
‖

1
2

∞,E′)Hd−1(∂E ′))

× ‖d2
K − d2

K0
‖

1
2

∞,E′ .

Here c2 = diam(2pK(E ′) ∪ 2pK0(E
′)) ≤ 2 diam(K ∪ K0) ≤ 4ρ and the supremum-

norm ‖ · ‖∞,E′ on E ′ can be estimated by

‖d2
K − d2

K0
‖∞,E′ ≤ 2 diam(E ′ ∪K ∪K0)‖dK − dK0‖∞,E′

≤ 2 [diam(E ′ ∪ {0}) + ρ] dH(K,K0).
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Moreover, intrinsic volumes are increasing on the class of convex sets, so

Hd(E ′) ≤ Hd
(
B(0, diam(E ′ ∪ {0}))

)

Hd−1(∂E ′) ≤ Hd−1
(
∂B(0, diam(E ′ ∪ {0}))

)
.

Together with the trivial estimate dH(K,K0) ≤ 2ρ and the equality diam(E∪{0}) =
diam(E ′ ∪ {0}), this yields the claim.

The authors of [3] argue that the exponent 1/2 in Proposition 2.1 is best possible.

3 Construction of the estimator

In Section 3.1 below, we define the Voronoi tensor measures and show how the
Minkowski tensors can be obtained from these. We then explain in Section 3.2 how
the Voronoi tensor measures can be estimated from finite point samples. As a special
case, we obtain estimators for all intrinsic volumes. This is detailed in Section 3.3.

3.1 The Voronoi tensor measures

Let K be a compact set. Define the Tr+s-valued measures Vr,s
R (K; · ) given on a

Borel set A ⊆ Rd by

Vr,s
R (K;A) =

∫

KR

1A(pK(x)) pK(x)r(x− pK(x))s dx. (3.1)

When K is a smooth surface, V0,2
R (K; · ) corresponds to the Voronoi covariance

measure of [17]. We will refer to the measures defined in (3.1) as the Voronoi tensor
measures.

Note that if f : Rd → R is a bounded Borel function, then
∫

Rd

f(x)Vr,s
R (K; dx) =

∫

KR

f(pK(x)) pK(x)r(x− pK(x))s dx ∈ Tr+s. (3.2)

Suppose now that K has positive reach Reach(K) > R. Then a special case of
the generalized Steiner formula derived in [10] yields that

Vr,s
R (K;A) =

d∑

k=1

ωk

∫

Σ

∫ R

0

1A(x)ts+k−1xrus dtΛd−k(K; d(x, u))

+ 1{s=0}

∫

K∩A
xr dx

= r!s!
d∑

k=0

κk+sR
s+kΦr,s

d−k(K;A), (3.3)

where κk is the volume of the unit ball in Rk. In particular, the total measure is

Vr,s
R (K) = Vr,s

R (K;Rd) = r!s!
d∑

k=0

κk+sR
s+kΦr,s

d−k(K).
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Equation (3.3), used for different parallel distances R, can be solved for the
Minkowski tensors. More precisely, choosing d + 1 different values 0 < R0 < . . . <
Rd < Reach(K) for R, we obtain a system of d+ 1 linear equations:



Vr,s
R0

(K;A)
...

Vr,s
Rd

(K;A)


 = r!s!



κsR

s
0 . . . κs+dR

s+d
0

...
...

κsR
s
d . . . κs+dR

s+d
d







Φr,s
d (K;A)

...
Φr,s

0 (K;A)


 . (3.4)

Since the Vandermonde matrix

Ar,s
R0,...,Rd

= r!s!



κsR

s
0 . . . κs+dR

s+d
0

...
...

κsR
s
d . . . κs+dR

s+d
d


 ∈ R(d+1)×(d+1) (3.5)

in (3.4) is invertible, the system can be solved for the tensors, and thus we get



Φr,s
d (K;A)

...
Φr,s

0 (K;A)


 =

(
Ar,s

R0,...,Rd

)−1



Vr,s
R0

(K;A)
...

Vr,s
Rd

(K;A)


 . (3.6)

If s > 0, then Φr,s
d (K;A) = 0 by definition, so we may omit one of the equations in

the system (3.4).

3.2 Estimation of Minkowski tensors from finite point
samples

Let K be a compact set of positive reach. Suppose that we are given a finite set K0

that is close to K in the Hausdorff metric. In the applications we have in mind, we
have in addition that K0 ⊆ K, but this is not necessary for the algorithm to work.
Based on K0, we want to estimate the local Minkowski tensors of K. We do this
by approximating Vr,s

Rk
(K;A) in Formula (3.6) by Vr,s

Rk
(K0;A), for k = 0, . . . , d. This

leads to the following set of estimators:



Φ̂r,s
d (K0;A)

...
Φ̂r,s

0 (K0;A)


 =

(
Ar,s

R0,...,Rd

)−1



Vr,s
R0

(K0;A)
...

Vr,s
Rd

(K0;A)


 (3.7)

with Ar,s
R0,...,Rd

given by (3.5). Setting A = Rd in (3.7), we obtain estimators

Φ̂r,s
k (K0) = Φ̂r,s

k (K0;Rd)

of the (global) Minkowski tensors. Note that this approach requires an estimate for
the reach of K because we need to choose 0 < R0, . . . , Rd < Reach(K).

Let
Vx(K0) = {y ∈ Rd | pK0(y) = x}
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denote the Voronoi cell of x ∈ K0 with respect to the set K0. Since Rd is the union
of the finitely many Voronoi cells of K0, it follows that KR

0 is the union of the R-
bounded parts of the Voronoi cells B(x,R) ∩ Vx(K0), x ∈ K0, which have pairwise
disjoint interiors. Thus (3.1) simplifies to

Vr,s
R (K0;A) =

∑

x∈K0∩A
xr
∫

B(x,R)∩Vx(K0)

(y − x)s dy. (3.8)

Like the Voronoi covariance measure, the Voronoi tensor measure Vr,s
R (K0;A) is a

sum of simple contributions from the individual Voronoi cells.
An example of a Voronoi cell decomposition associated with a digital image is

sketched in Figure 2. The original set K is the disk bounded by the inner black
circle, and the disk bounded by the outer black circle is its R-parallel set KR. The
finite point sample is K0 = K ∩ Z2, which is shown as the set of red dots in the
picture and the red curve is the boundary of its R-parallel set. The Voronoi cells of
K0 are indicated by blue lines. The R-bounded part of one of the Voronoi cells is
the part that is cut off by the red arc.

Figure 2: The Voronoi decomposition (blue lines) and R-parallel set (red curve) associated
with a digital image.

3.3 The case of intrinsic volumes

Recall that Φ0,0
k (K) = Λk(K;Rd) is just the usual kth intrinsic volume. Thus, Sec-

tion 3.2 provides an estimator for all intrinsic volumes as a special case. This case is
particularly simple. The measure V0,0

R (K;A) is simply the volume of a local parallel
set

V0,0
R (K;A) = Hd({x ∈ KR | pK(x) ∈ A}),
V0,0
R (K) = Hd(KR).

In particular, if K ⊆ Rd is a compact set with Reach(K) > R, then Equation (3.3)
reduces to the usual local Steiner formula

Hd({x ∈ KR | pK(x) ∈ A}) =
d∑

k=0

κkR
kΛd−k(K;A× Sd−1),
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and

Hd(KR) =
d∑

k=0

κkR
kΦ0,0

d−k(K).

In this case, our algorithm approximates the parallel volumeHd(KR) byHd(KR
0 ).

In the example in Figure 2, this corresponds to approximating the volume of the
larger black disk by the volume of the region bounded by the red curve. This volume
is again the sum of the volumes of the regions bounded by the red and blue curves.
In other words, it is the sum of volumes of the R-bounded Voronoi cells on the
right-hand side of the equation

V0,0
R (K0;A) =

∑

x∈K0∩A
Hd(B(x,R) ∩ Vx(K0)).

4 Convergence properties

In this section we prove the main convergence result. This is an immediate general-
ization of [17, Theorem 5.1].

4.1 The convergence theorem

For a bounded Lipschitz function f : Rd → R, we let |f |∞ denote the usual supre-
mum norm,

|f |L = sup

{ |f(x)− f(y)|
|x− y|

∣∣∣∣ x 6= y

}

the Lipschitz semi-norm, and

|f |bL = |f |L + |f |∞

the bounded Lipschitz norm. Let dbL be the bounded Lipschitz metric on the space
of bounded Tp-valued Borel measures on Rd, given on two such measures µ and ν
on Rd by

dbL(µ, ν) = sup

{∣∣∣
∫
f dµ−

∫
f dν

∣∣∣
∣∣∣∣ |f |bL ≤ 1

}
.

The following theorem shows that the map

K 7→ Vr,s
R (K; · )

is Hölder continuous with exponent 1
2
with respect to the Hausdorff metric on Cd

and the bounded Lipschitz metric. In the proof, we use the symmetric difference
A∆B = (A \B) ∪ (B \ A) of sets A,B ⊆ Rd.

Theorem 4.1. Let R, ρ > 0 and r, s ∈ N0 be given. Then there is a positive constant
C2 = C2(d,R, ρ, r, s) such that

dbL(Vr,s
R (K; · ),Vr,s

R (K0; · )) ≤ C2dH(K,K0)
1
2

for all compact sets K,K0 ⊆ B(0, ρ).
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Proof. Let f with |f |bL ≤ 1 be given. Then (3.2) yields
∣∣∣
∫

Rd

f(x)Vr,s
R (K; dx)−

∫

Rd

f(x)Vr,s
R (K0; dx)

∣∣∣

=
∣∣∣
∫

KR

f(pK(x)) pK(x)r(x− pK(x))s dx

−
∫

KR
0

f(pK0(x))pK0(x)r(x− pK0(x))s dx
∣∣∣

≤ I + II, (4.1)

where I is the integral
∫

KR∩KR
0

∣∣f(pK(x))pK(x)r(x− pK(x))s − f(pK0(x)) pK0(x)r(x− pK0(x))s
∣∣ dx

and

II = ρrRsHd(KR∆KR
0 ).

By [3, Corollary 4.4], there is a constant c1 = c1(d,R, ρ) > 0 such that

Hd(KR∆KR
0 ) ≤ c1 dH(K,K0) (4.2)

when dH(K,K0) ≤ R/2. Replacing c1 by a possibly even bigger constant, we can
ensure that (4.2) also holds when R/2 ≤ dH(K,K0) ≤ 2ρ. Hence,

II ≤ c2 dH(K,K0)
1
2 (4.3)

with some constant c2 = c2(d,R, ρ, r, s) > 0.
Using the inequality

∣∣∣∣
m⊗

i=1

yi −
m⊗

i=1

zi

∣∣∣∣ ≤
m∑

j=1

|yj − zj|
j−1∏

i=1

|yi|
m∏

i=j+1

|zi|, (4.4)

and the assumption |f |bL ≤ 1, we get

I ≤ (r + s+ 1)ρrRs

∫

KR∩KR
0

|pK(x)− pK0(x)| dx

≤ c3 dH(K,K0)
1
2 . (4.5)

The existence of the constant c3 = c3(d,R, ρ, r, s) in the last inequality is guaranteed
by Proposition 2.1 with KR ∩ KR

0 as the set E, because this choice of E satisfies
diam(E ∪ {0}) ≤ 2(ρ+R).

When r = s = 0 and f = 1, the above proof simplifies to Inequality (4.2) as
I vanishes. Hence we obtain the following strengthening of the theorem, which is
relevant for the estimation of intrinsic volumes.
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Theorem 4.2. Let R, ρ > 0. Then there is a constant C3 = C3(d,R, ρ) > 0 such
that ∣∣V0,0

R (K)− V0,0
R (K0)

∣∣ ≤ C3 dH(K,K0)

for all compact sets K,K0 ⊆ B(0, ρ).

For local tensors, the proof of Theorem 4.1 can also be adapted to show a con-
vergence result.

Theorem 4.3. If Ki → K with respect to the Hausdorff metric on Cd, as i → ∞,
then Vr,s

R (Ki;A) → Vr,s
R (K;A) in the tensor norm, for every Borel set A which

satisfies
Hd(p−1

K (∂A) ∩KR) = 0.

Proof. Convergence of tensors is equivalent to coordinate-wise convergence. Hence,
it is enough to show that the coordinates satisfy

Vr,s
R (Ki;A)i1...ir+s → Vr,s

R (K;A)i1...ir+s as i→∞,

for all choices of indices i1 . . . ir+s; see the notation at the beginning of Section 2.
We write TK(x) = pK(x)r(x− pK(x))s. Then

Vr,s
R (K;A)i1...ir+s =

∫

KR

1A(pK(x))TK(x)i1...ir+s dx

is a signed measure. Let TK(x)+
i1...ir+s

and TK(x)−i1...ir+s
denote the positive and neg-

ative part of TK(x)i1...ir+s , respectively. Then

Vr,s
R (K;A)±i1...ir+s

=

∫

KR

1A(pK(x))TK(x)±i1...ir+s
dx

are non-negative measures such that

Vr,s
R (K; · )i1...ir+s = Vr,s

R (K; · )+
i1...ir+s

− Vr,s
R (K; · )−i1...ir+s

.

The proof of Theorem 4.1 can immediately be generalized to show that the
measure Vr,s

R (Ki; · )±i1...ir+s
converges to Vr,s

R (K; · )±i1...ir+s
in the bounded Lipschitz

norm (as i → ∞), and hence the measures converge weakly. In particular, they
converge on every continuity set of Vr,s

R (K; · )±i1...ir+s
. If Hd(p−1

K (∂A)∩KR) = 0, then
A is such a continuity set.

Though relatively mild, the condition Hd(p−1
K (∂A) ∩ KR) = 0 can be hard to

control if K is unknown. For instance, it is not satisfied if A = K or if K is a
polytope intersecting ∂A at a vertex.

As the matrix Ar,s
R0,...,Rd

in definition (3.7) of Φ̂r,s
k (K0;A) does not depend on the

set K0, the above results immediately yield a consistency result for the estimation
of the Minkowski tensors. We formulate this only for A = Rd.
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Corollary 4.4. Let ρ > 0 and let K be a compact subset of B(0, ρ) such that
Reach(K) > Rd > . . . > R0 > 0. There is a constant C4 = C4(d,R0, . . . , Rd, ρ) such
that ∣∣Φ̂0,0

k (K0)− Φ0,0
k (K)

∣∣ ≤ C4 dH(K0, K),

for all k ∈ {0, . . . , d}, whenever the compact set K0 is contained in B(0, ρ).
For r, s ∈ N0 there is a constant C5 = C5(d,R0, . . . , Rd, ρ, r, s) such that

∣∣Φ̂r,s
k (K0)− Φr,s

k (K)
∣∣ ≤ C5 dH(K0, K)

1
2 ,

for all k ∈ {0, . . . , d− 1}, whenever the compact set K0 is contained in B(0, ρ).

5 Application to digital images

Our main motivation for this paper is the estimation of Minkowski tensors from
digital images. Recall that we model a black-and-white digital image of K ⊆ Rd as
the set K ∩ aL, where L ⊆ Rd is a fixed lattice and a > 0. We refer to [1] for basic
information about lattices.

The lower dimensional parts of K are generally invisible in the digital image.
When dealing with digital images, we will therefore always assume that the un-
derlying set is topologically regular, which means that it is the closure of its own
interior.

In digital stereology, the underlying object K is often assumed to belong to one
of the following two set classes:

• K is called δ-regular if it is topologically regular and the reach of its closed
complement cl(Rd\K) and the reach of K itself are both at least δ > 0. This
is a kind of smoothness condition on the boundary, ensuring in particular that
∂K is a C1 manifold (see the discussion after Definition 1 in [28]).

• K is called polyconvex if it is a finite union of compact convex sets. While
convex sets have infinite reach, note that polyconvex sets do generally not
have positive reach. Also note that for a compact convex set K ⊆ Rd, the set
cl(Rd\K) need not have positive reach.

It should be observed that for a compact set K ⊆ Rd both assumptions imply that
the boundary of K is a (d − 1)-rectifiable set (i.e., the image of a bounded subset
of Rd−1 under a Lipschitz map), which is a much weaker property that will still be
sufficient for the analysis in Section 5.1.

5.1 The volume tensors

Simple and efficient estimators for the volume tensors Φr,0
d (K) of a (topologically

regular) compact set K are already known and are usually based on the approxima-
tion of K by the union of all pixels (voxels) with midpoint in K. This leads to the
estimator

Φ̃r,0
d (K ∩ aL) =

1

r!

∑

z∈K∩aL

∫

z+aV0(L)

xr dx,

12



where V0(L) is the Voronoi cell of 0 in the Voronoi decomposition generated by L.
This, in turn, can be approximated by

˜̃Φr,0
d (K ∩ aL) =

ad

r!
Hd (V0(L))

∑

z∈K∩aL
zr.

When r ∈ {0, 1}, we even have Φ̃r,0
d (K ∩ aL) = ˜̃Φr,0

d (K ∩ aL).
Choose C > 0 such that V0(L) ⊆ B(0, C). Then

K∆
⋃

z∈K∩aL
(z + aV0(L)) ⊆ (∂K)aC .

In fact, if x ∈
[⋃

z∈K∩aL(z + aV0(L))
]
\K, then there is some z ∈ K ∩ aL such that

x ∈ z + aV0(L) and x /∈ K. Since z ∈ K and x /∈ K, we have [x, z] ∩ ∂K 6= ∅.
Moreover, x − z ∈ aV0(L) ⊂ B(0, aC), and hence |x − z| ≤ aC. This shows that
x ∈ (∂K)aC . Now assume that x ∈ K and x /∈ (∂K)aC . Then B(x, ρ) ⊆ K for some
ρ > aC. Since

⋃
z∈aL(z+aV0(L)) = Rd, there is some z ∈ aL such that x ∈ z+aV0(L).

Hence x − z ∈ aV0(L) ⊂ B(0, aC). We conclude that z ∈ B(x, aC) ⊆ K, therefore
z ∈ K ∩ aL and thus x ∈ ⋃z∈K∩aL(z + aV0(L)).

Hence ∣∣Φ̃r,0
d (K ∩ aL)− Φr,0

d (K)
∣∣ ≤ 1

r!

∫

(∂K)aC
|x|r dx.

If Hd(∂K) = 0, then the integral on the right-hand side goes to zero by monotone
convergence, so

lim
a→0+

Φ̃r,0
d (K ∩ aL) = Φr,0

d (K). (5.1)

If ∂K is (d− 1)-rectifiable, then Hd(∂K) = 0 and [8, Theorem 3.2.39] implies that
Hd((∂K)aC) is of order O(a). Hence, the speed of convergence in (5.1) is O(a) as
a→ 0+.

Inequality (4.4) yields that |xr−zr| ≤ aCr(|x|+aC)r−1 whenever x ∈ z+aV0(L)
and r ≥ 1. Therefore,

∣∣ ˜̃Φr,0
d (K ∩ aL)− Φ̃r,0

d (K ∩ aL)
∣∣ ≤ aC

(r − 1)!

∑

z∈K∩aL

∫

z+aV0(L)

(|x|+ aC)r−1 dx

≤ aC

(r − 1)!

∫

KaC

(|x|+ aC)r−1 dx,

which shows that
lim
a→0+

˜̃Φr,0
d (K ∩ aL) = Φr,0

d (K),

provided thatHd(∂K) = 0. If ∂K is (d−1)-rectifiable, then the speed of convergence
is of the order O(a).

Hence, we suggest to simply use the estimators ˜̃Φr,0
d (K ∩ aL) for the volume

tensors. This estimator can be computed faster and more directly than Φ̂r,0
d (K∩aL).

Moreover, it does not require an estimate for the reach of K, and it converges for a
much larger class of sets than those of positive reach.
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5.2 Convergence for digital images

For the estimation of the remaining tensors we suggest to use the Voronoi tensor
measures. Choosing K0 = K ∩ aL in (3.8), we obtain

Vr,s
R (K ∩ aL;A) =

∑

x∈K∩aL∩A
xr
∫

B(x,R)∩Vx(K∩aL)

(y − x)s dy. (5.2)

To show some convergence results in Corollary 5.2, we first note that the digital
image converges to the original set in the Hausdorff metric.

Lemma 5.1. If K is compact and topologically regular, then

lim
a→0+

dH(K,K ∩ aL) = 0.

If K is δ-regular, then dH(K,K ∩ aL) is of order O(a). The same holds if K is
topologically regular and polyconvex.

Proof. Recall from [1, p. 311] that µ(L) = maxx∈Rd dist(x,L) is well defined and
denotes the covering radius of L.

Let ε > 0 be given. Since K is compact, there are points x1, . . . , xm ∈ K such
that

K ⊆
m⋃

i=1

B(xi, ε).

Using the fact that K is topologically regular, we conclude that there are points
yi ∈ int(K) ∩ int(B(xi, 2ε)) for i = 1, . . . ,m. Hence, there are εi ∈ (0, 2ε) such that
B(yi, εi) ⊆ K ∩B(xi, 2ε) for i = 1, . . . ,m. Let 0 < a < min{εi/µ(L) | i = 1, . . . ,m}.
Since εi/a > µ(L) it follows that aL ∩ B(yi, εi) 6= ∅, for i = 1, . . . ,m. Thus we can
choose zi ∈ aL ∩B(yi, εi) ⊆ aL ∩K for i = 1, . . . ,m. By the triangle inequality, we
have |zi − xi| ≤ εi + 2ε ≤ 4ε, and hence xi ∈ (K ∩ aL) +B(0, 4ε), for i = 1, . . . ,m.
Therefore, K ⊆ (K ∩ aL) +B(0, 5ε) if a > 0 is sufficiently small.

Assume that K is δ-regular, for some δ > 0. We choose 0 < a < δ/(2µ(L)).
Since aµ(L) < δ/2, for any x ∈ K there is a ball B(y, aµ(L)) of radius aµ(L) such
that x ∈ B(y, aµ(L)) ⊆ K. From aL ∩ B(y, aµ(L)) 6= ∅ we conclude that there is a
point z ∈ K ∩ aL with |x− z| ≤ 2aµ(L). Hence x ∈ (K ∩ aL) + B(0, 2aµ(L)), and
therefore dH(K,K ∩ aL) ≤ 2aµ(L).

Finally, we assume that K is topologically regular and polyconvex. Then K is
the union of finitely many compact convex sets with interior points. Hence, for the
proof we may assume that K is convex with B(0, ρ) ⊆ K for a fixed ρ > 0. Choose
0 < a < ρ/(2µ(L)) and put r = 2aµ(L) < ρ. If x ∈ K, then B((1 − r/ρ)x, r) ⊆ K
and B((1− r/ρ)x, r) contains a point z ∈ aL. Since

|x− z| ≤ r + (r/ρ)|x| ≤ 2aµ(L) (1 + diam(K)/ρ) ,

we get
K ⊂ (K ∩ aL) +B

(
0, 2aµ(L) (1 + diam(K)/ρ)

)
,

which completes the argument.
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Thus Theorems 4.1 and 4.2 and Corollary 4.4 together with Lemma 5.1 yield the
following result.

Corollary 5.2. If K is compact and topologically regular, then

lim
a→0+

dbL
(
Vr,s
R (K; · ),Vr,s

R (K ∩ aL; · )
)

= 0,

lim
a→0+

Vr,s
R (K ∩ aL) = Vr,s

R (K).

If, in addition, K has positive reach, then

lim
a→0+

Φ̂r,s
k (K ∩ aL) = Φr,s

k (K). (5.3)

If K is δ-regular or a topologically regular convex set, then the speed of convergence
is O(a) when r = s = 0 and O(

√
a) otherwise.

The property (5.3) expresses the fact that Φ̂r,s
k (K ∩ aL) is multigrid convergent

as a → 0+. A similar statement about local tensors, but without the speed of
convergence, can be made. We omit this here.

5.3 Possible refinements of the algorithm for digital images

We first describe how the number of necessary radii R0 < R1 < . . . < Rd in (3.7) can
be reduced by one if s = 0 and A = Rd. Setting s = 0 and A = Rd and subtracting
(r!)Φr,0

d (K) on both sides of Equation (3.3) yields

∫

KR\K
pK(x)r dx = Vr,0

R (K)− (r!)Φr,0
d (K) = (r!)

d∑

k=1

κkR
kΦr,0

d−k(K). (5.4)

As noted in Section 5.1, the volume tensor Φr,0
d (K) can be estimated by ˜̃Φr,0

d (K∩aL).
We may take Vr,0

R (K ∩ aL) − (r!) ˜̃Φr,0
d (K ∩ aL) as an improved estimator for (5.4).

This corresponds to replacing the integration domains B(x,R)∩Vx(K∩aL) in (5.2)
by

(B(x,R) ∩ Vx(K ∩ aL))\Vx(aL).

This makes sense since Vx(aL) is likely to be contained in K while the left-hand side
of (5.4) is an integral over KR\K. The Minkowski tensors can now be isolated from
only d equations of the form (5.4) with d different values of R.

We now suggest a slightly modified estimator for the Minkowski tensors satisfying
the same convergence results as Φ̂r,s

k (K ∩ aL) but where the number of summands
in (5.2) is considerably reduced. As the volume tensors can easily be estimated with
the estimators in Section 5.1, we focus on the tensors with k < d.

Let K be a compact set. We define the Voronoi neighborhood NL(0) of 0 to be
the set of points y ∈ L such that the Voronoi cells V0(L) and Vy(L) of 0 and y,
respectively, have exactly one common (d−1)-dimensional face. Similarly, for z ∈ L
the Voronoi neighborhood NL(z) of z is defined, and thus clearly NL(z) = z+NL(0).
When L ⊂ R2 is the standard lattice, NL(z) consists of the four points in L that are
neighbors of z in the usual 4-neighborhood. Define I(K ∩aL) to be the set of points
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z ∈ K ∩ aL such that NaL(z) ⊆ K ∩ aL. The relative complement B(K ∩ aL) =
(K ∩ aL) \ I(K ∩ aL) of I(K ∩ aL) can be considered as the set of lattice points in
K ∩ aL that are close to the boundary of the given set K.

We modify (5.2) by removing contributions from I(K ∩ aL) and define

V̌r,s
R (K ∩ aL;A) =

∑

x∈B(K∩aL)∩A
xr
∫

B(x,R)∩Vx(K∩aL)

(y − x)s dy. (5.5)

Assuming that K has positive reach, let 0 < R0 < R1 < . . . < Rd < Reach(K). We
write again K0 for K ∩ aL. Then we obtain the estimators




Φ̌r,s
d (K0;A)

...
Φ̌r,s

0 (K0;A)


 =

(
Ar,s

R0,...,Rd

)−1



V̌r,s
R0

(K0;A)
...

V̌r,s
Rd

(K0;A)


 (5.6)

with Ar,s
R0,...,Rd

given by (3.5).
Working with V̌r,s

R (K ∩ aL;A) reduces the workload considerably. For instance,
when K is δ-regular or polyconvex and topologically regular, the number of elements
in I(K ∩ aL) increases with a−d, whereas the number of elements in B(K ∩ aL)
only increases with a−(d−1) as a → 0+. The set I(K ∩ aL) can be obtained from
the digital image of K in linear time using a linear filter. Moreover, we have the
following convergence result.

Proposition 5.3. Let K be a topologically regular compact set with positive reach
and let C be such that V0(L) ⊆ B(0, C). If A is a Borel set in Rd and aC < R0 <
R1 < . . . < Rd < Reach(K) and K0 = K ∩ aL, then

Φ̌r,s
k (K0;A) = Φ̂r,s

k (K0;A)

for all k ∈ {0, . . . , d − 1}, whenever s = 0 or s is odd. If s is even and k ∈
{0, . . . , d− 1}, then

lim
a→0+

Φ̌r,s
k (K0;A) = Φ̂r,s

k (K0;A).

Proof. Let aC < R < Reach(K). For x ∈ I(K ∩ aL), we have

B(x,R) ∩ Vx(K ∩ aL) = Vx(aL),

so the contribution of x to the sum in (5.2) is (s!)xrΦs,0
d (V0(aL)). It follows that

Vr,s
R (K ∩ aL;A)− V̌r,s

R (K ∩ aL;A) = (s!)Φs,0
d (V0(aL))

∑

x∈I(K∩aL)∩A
xr. (5.7)

For odd s we have Φs,0
d (V0(aL)) = 0, so the claim follows. For s = 0 the right-hand

side of (5.7) does not vanish, but it is independent of R. A combination of

(
Ar,0

R0,...,Rd

)−1




1
1
...
1


 =




(r!)−1

0
...
0


 ,

with (5.7), (3.7) and (5.6) gives the claim.
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For even s > 0, we have that Φs,0
d (V0(aL)) = ad+sΦs,0

d (V0(L)), while
∣∣∣

∑

x∈I(K∩aL)∩A
xr
∣∣∣ ≤

∑

x∈I(K∩aL)

|x|r

≤ sup
x∈K
|x|r

∑

x∈I(K∩aL)

(
adHd(V0(L))

)−1Hd(Vx(aL))

≤ sup
x∈K
|x|r · a−d · Hd(V0(L))−1 · Hd(KaC).

Therefore, the expression on the righ-hand side of (5.7) converges to 0.

6 Generalization for local tensors

In this section, we consider an obvious generalization for local tensors, that is, for
certain tensor valued measures. Namely, for k < d it is natural to define Φr,s

k (K; · )
as a Tr+s-valued measure on all of Σ. For a set K of positive reach and a measurable
set B ⊆ Σ, we put

Φ
r,s

k (K;B) =

∫

Σ

1B(x, u)xrus Λk(K, d(x, u)), k ∈ {0, . . . , d− 1}.

Note that we use the ‘bar’-notation in this section for all quantities that are related
to generalized local tensors. Let uK(x) = (x− pK(x))/|x− pK(x)|, whenever this is
defined. The problem with estimating Φ

r,s

k (K;B) from integrals
∫

KR\K
1B(pK(x), uK(x))pK(x)r(x− pK(x))s dx

by solving an appropriate linear system is that the function x 7→ x/|x| on Rd \{0} is
not Lipschitz, meaning that the convergence proof will not work. Instead, we suggest
to use the following modification of the Voronoi tensor measure:

Vr,s

R (K;B) =

∫

KR\KR/2

1B(pK(x), uK(x))pK(x)r(x− pK(x))s dx. (6.1)

If 0 < R < reach(K), then the generalized Steiner formula yields in this case

Vr,s

R (K;B) = r!s!
d∑

k=1

κs+kR
s+k(1− 2−(s+k))Φ

r,s

d−k(K;B).

Again, we can recover the Minkowski tensors as follows:



Φ
r,s

d−1(K;B)
...

Φ
r,s

0 (K;B)


 =

(
A

r,s

R1,...,Rd

)−1



Vr,s

R1
(K;B)
...

Vr,s

Rd
(K;B)




where

A
r,s

R1,...,Rd
=

1

r!s!



κs+1(1− 2−(s+1))Rs+1

1 . . . κs+d(1− 2−(s+d))Rs+d
1

...
...

κs+1(1− 2−(s+1))Rs+1
d . . . κs+d(1− 2−(s+d))Rs+d

d


 .
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The map x 7→ x/|x| is Lipschitz on Rd\ int(B(0, R/2)) with Lipschitz constant
4/R, and therefore

|uK(x)− uK0(x)| ≤ 4
R
|pK(x)− pK0(x)|

on KR\KR/2 ∩KR
0 \KR/2

0 . Moreover,

(KR\KR/2)∆(KR
0 \KR/2

0 ) ⊆ (KR∆KR
0 ) ∪ (KR/2∆K

R/2
0 ).

Using this, it is straightforward to generalize the proof of Theorem 4.3 to show the
next result.

Theorem 6.1. If K,Ki ∈ Cd are compact sets such that Ki → K in the Hausdorff
metric as i → ∞, then Vr,s

R (Ki;B) converges to Vr,s

R (K;B) in the tensor norm for
any B satisfying

Hd({x ∈ KR | (pK(x), uK(x)) ∈ ∂B}) = 0.

For digital images, the use of the modified Voronoi tensor measure (6.1) also has
the advantage that when a is sufficiently small, Voronoi cells with Vx(K ∩ aL) =
Vx(aL) are ignored. These are likely to come from the interior of K, and should
therefore not contribute.

The drawback of this algorithm is that we need twice as many radii R to estimate
the Minkowski tensors. In particular, the set KR\KR/2 may be quite small, which
increases the risk of errors in practical computations.

7 Comparison to known estimators

Most existing estimators of intrinsic volumes [14, 15, 19] and Minkowski tensors
[22, 24] are of local type. The idea is to look at all n × · · · × n pixel blocks in the
image and count how many times each of the 2nd possible configurations of black
and white points occur. Each configuration is weighted by an element of Tr+s and
Φr,s

k (K) is estimated as a weighted sum of the configuration counts. It is known
that estimators of this type for intrinsic volumes other than ordinary volume are
not multigrid convergent, even when K is known to be a convex polytope; see [26].
It is not difficult to see that there cannot be a multigrid convergent local estimator
for the (even rank) tensors Φ0,2s

k (K) with k = 0, . . . , d− 1, s ∈ N, for polytopes K,
either. In fact, repeatedly taking the trace of such an estimator would lead to a
multigrid convergent local estimator of the kth intrinsic volume, in contradiction
to [26].

The algorithm presented in this paper is not local: it is required in the con-
vergence proof that the parallel radius R is fixed while the resolution a−1 goes to
infinity. The non-local operation in the definition of our estimator is the calculation
of the Voronoi diagram. The computation time for Voronoi diagrams of k points is
O(k log k+kbd/2c), see [4], which is somewhat slower than local algorithms for which
the computation time for k data points is O(k).

The idea to base digital estimators for intrinsic volumes on an inversion of the
Steiner formula as in (3.6) has occurred before in [13, 18]. In both references, the
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authors define estimators for polyconvex sets which are not necessarily of positive
reach. This more ambitious aim leads to problems with the convergence.

In [13], the authors use a version of the Steiner formula for polyconvex sets given
in terms of the Schneider index, see [20]. Since its definition is, however, local in
nature, the authors choose a local algorithm to estimate it. As already mentioned,
such algorithms are not multigrid convergent.

In [18], it is used that the intrinsic volumes of a polyconvex set can, on the one
hand, be approximated by those of a parallel set with small parallel radius, and on
the other hand, the closed complement of this parallel set has positive reach, so that
its intrinsic volumes can be computed via the Steiner formula. The authors employ
a discretization of the parallel volumes of digital images, but without showing that
the convergence is preserved.

It is likely that the ideas of the present paper combined with the ones of [18] could
be used to construct multigrid convergent digital algorithms for polyconvex sets. The
price for this is that the notion of convergence in [18] is slightly artificial for practical
purposes, requiring very small parallel radii in order to get good approximations and
at the same time large radii compared to resolution.

In [27], local algorithms based on grey-valued images are suggested. They are
shown to converge to the true value when the resolution tends to infinity. However,
they only apply to surface and certain mean curvature tensors. Moreover, they are
hard to apply in practice, since they require detailed information about the un-
derlying point spread function which specifies the representation of the object as
grey-value image. If grey-value images are given, the algorithm of the present paper
could be applied to thresholded images, but there may be more efficient ways to
exploit the additional information of the grey-values.
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